
1

FINAL FINDINGS REPORT
Hypothesis

Feb 16, 2024

Prepared for: Hypothesis

Subgraph Technologies, Inc.

345 ave Victoria, Suite 400

Montreal, Quebec

https://subgraph.com

2

Contents

Overview 5
Summary of Activities . 5

Hosts Tested . 6

Tools Used . 6

Code Review . 6

Artifacts Examined . 7

Infrastructure . 7

Duration . 7

Observations on Authentication . 8

Observations on Input Validation . 8

Observations on Authentication . 8

Observations on Cloud Infrastructure . 9

Observations on Authorization . 9

Observations on Intrusion Prevention . 9

Observations on Third-Party Dependency Management . 10

Summary 11

Details 12
V-001: Minimum Password Length Too Low . 12

Discussion . 12

Impact Analysis . 12

Remediation Recommendations . 12

Additional Information . 13

V-002: Cookies Set Without Secure Flag . 14

Discussion . 14

Impact Analysis . 15

Remediation Recommendations . 15

Additional Information . 15

V-003: Stale AWS Access Keys . 16

Discussion . 16

Impact Analysis . 16

Remediation Recommendations . 16

Additional Information . 16

V-004: Potential OAuth Authentication Bypass . 17

Discussion . 17

Impact Analysis . 17

Remediation Recommendations . 18

Additional Information . 18

3

Appendix 19
Methodology . 19

Description of testing activities . 19

Reporting . 20

Severity ratings . 20

Contextual factors . 22

Likelihood . 23

Remediation status . 24

4

Overview

Summary of Activities

Hypothesis contracted an independent security assessment of several components that comprise the

Hypothesis service. These included:

• The h application backend

• The LMS integration

• The via Proxy

• Checkmate

• The Hypothesis client

The following classes of vulnerabilities were in scope for testing:

• Injection (“cross-site scripting”, “SQL injection”, and all other related attacks)

• Business logic

• Trust relationships between application components

• Authentication and authorization enforcement

• Configuration

• Use of cryptography by the application

Functional security testing of the h application was performed in the following manner:

Subgraph interacted with a non-production instance deployed within their multi-tenant environment.

Testing of the h application was from the perspective of a user of the public Hypothesis service. This

functional testing of the live application simulated an adversarial user account without administrative

privileges. The public source code of the h application was also reviewed to cover key areas of the total

attack surface.

Functional security testing of the lms integration was performed in the following manner:

The LMS integration was tested through a configuration that was established between the Hypothesis

Beta environment and a LMS platform. Subgraph performed testing simulating a user interacting with the

Hypothesis backend as an authenticated user originating from within the LMS. The testing simulated an

adversarial attacker originating in the LMS integrated with the Hypothesis infrastructure. Elements of the

public source code of the LMS integration was also reviewed.

The via proxy was tested through the application, simulating a malicious user attempting to circumvent the

security controls implemented in the proxy.

Functional testing of the viahtml proxy, the client components, and checkmate was performed through the

h application and the lms integration, from within the LMS.

5

Hosts Tested

• https://qa-lms-via.hypothes.is/

• https://qa-checkmate.hypothes.is

• https://qa-via.hypothes.is

• https://qa-viahtml.hypothes.is

• https://qa-web.hypothes.is

• https://qa.hypothes.is

Tools Used

• Burpsuite Pro

• Firefox

Code Review

Tactical auditing of source code was performed. This means that, rather than a full code review, key areas:

security boundaries, authentication, input validation, credential handling, etc, were examined in source

code. The public commit logs were also surveyed.

Third-party dependencies were scanned for vulnerabilities or issues with dependency management using

automated tools.

6

Artifacts Examined

The h application source tree at commit 323c11eb08d6777669651fcf0fce04a1341f4043.

The checkmate source tree at commit d8826ce2cb0e82a98e1725a1e65bea2bc74c7b58.

The client source tree at commit f23ae27dc527489da5d480de9446c57196879756.

The viahtml source tree at commit f9d1565c357ce08e63756ec4e885db9edae733d9.

The lms source tree at commit fb4db8b687b448f03a152476ed3384f69b3093eb

Infrastructure

A control plane audit of the the AWS environment in which the Hypothesis application was deployed. For

this a role was created for Subgraph with the built-in SecurityAudit managed policy permissions.

Duration

The duration of the engagement was approximately 10 days.

7

https://github.com/hypothesis/h/tree/323c11eb08d6777669651fcf0fce04a1341f4043
https://github.com/hypothesis/checkmate/tree/d8826ce2cb0e82a98e1725a1e65bea2bc74c7b58
https://github.com/hypothesis/client/tree/f23ae27dc527489da5d480de9446c57196879756
https://github.com/hypothesis/viahtml/tree/f9d1565c357ce08e63756ec4e885db9edae733d9
https://github.com/hypothesis/lms/tree/fb4db8b687b448f03a152476ed3384f69b3093eb
https://docs.aws.amazon.com/aws-managed-policy/latest/reference/SecurityAudit.html

Observations on Authentication

The Hypothesis public application accepts a username and password as authentication credentials. Upon

successful authentication, cookies are set for both authentication and the session. Cookies are set with

the HttpOnly flag, but not the secure flag. Not setting the secure flag on authentication/session cookies is

highlighted in this report as a finding (V-002), however modern browser defenses heavily mitigate the risk.

Username enumeration is possible, i.e., the application does inform clients attempting to login that a

provided username exists or not. This would typically be reported as an issue however usernames are

revealed quite openly within the application.

Request intent is authenticated using a CSRF token. Subgraph observed that the CSRF token is validated.

Observations on Input Validation

Subgraph tested for both SQL injection and content injection, such as cross-site scripting. The h application

uses an ORM abstraction library (Sqlalchemy) for database queries and does so very consistently. Numerous

tests were also performed to test for HTML and script injection. No instances were identified.

Observations on Authentication

The h backend sets a session cookie on successful authentication. Attempts to connect without this cookie

cause a redirect to the login page. This appears to function as designed.

Hypothesis when integrated with an LMS (learning management system) has a more complicated authenti-

cation system. Hypothesis supports LTI 1.1 and 1.3. One of the key differences in these versions is that

LMS 1.3 uses OAUTH2/OIDC with JWTs for message signing. LTI 1.1 uses OAUTH 1.0a. Testing of a live

deployment used an LMS integrated with the LTI 1.1 adapter. Tactical code review was performed on

some of the implementation code as it was not possible to fully simulate the role of an LMS (or that of

Hypothesis) due to limitations in the configuration flexibility in the testing environment. Some of the

potential complexity was simplified in the functional testing scenario, and tactical code review was applied

to compensate, though even this had some limitations in total code coverage.

Password hashing uses bcrypt with 12 rounds. This is the current default value for the implementation that

is used by h and is considered a reasonable standard. The number of “rounds” is the computational cost to

produce a hash from a source string. The default value raises the effort cost of a password cracking attack,

however the value of this is ultimately undermined by the application permitting very weak passwords:

see V-001.

The h backend also supports OAuth for authentication. This is important for supporting LTI, which partially

uses OAuth 1.0a for LTI 1.1 and OAuth 2.0 and OIDC for LTI 1.3. Functional testing and tactical code review

was employed to identify possible vulnerabilities. One issue that was deemed essentially theoretical (and

was not verified with any functional testing) was identified in the code. This issue is described in V-004.

8

https://web.hypothes.is/help/which-lti-parameters-are-used-by-the-lms-app/
https://github.com/hypothesis/h/blob/main/h/security/encryption.py#L21-L23
https://passlib.readthedocs.io/en/stable/lib/passlib.hash.bcrypt.html

TLS provides endpoint authentication for network interfaces of the system. The service did not appear to

be usable over HTTP. Requests sent to the application over HTTP result in a redirect to the HTTPS service.

The application server endpoint also leverages HSTS by sending a Strict-Transport-Security response header

that will informs clients to upgrade connections to TLS. Themax-age value supplied is 6 months, which is a

reasonable value.

Observations on Cloud Infrastructure

Subgraph performed an audit of the AWS configuration state. Noteworthy observations include the

following:

• The password policy does not expire passwords

• There were two access keys found that do not appear to have been used in the past 90 days.

• A console user account that does not appear to have been used in the past 90 days.

None of these issues are necessarily vulnerabilities. They all introduce some risk of unused credentials that

could eventually be compromised or leaked. Subgraph recommends periodic reevaluation of privileged

access.

Observations on Authorization

The typical h user does not exist in a context where there is complex role-based access control. The testing

performed by Subgraph explored enforcement within the multitenant application and did not identify and

breaches of user authorization.

Numerous attempts were made to access URLs that should not be accessible through the via proxy. These

included addresses such as the loopback interface, non-routeable internal addresses, the address for the

EC2 instance metadata service, IPV6 loopback, and others. The URL validation in place did not permit

access to any addresses of this type.

Wombat is a Javascript framework that is injected via the via proxy. Wombat attempts to safely enable

scripting and AJAX in pages that are rendered through the proxy. Subgraph did not identify a way to break

the wombat framework within the duration of the engagement, however it may be possible. Subgraph

believes there is some residual risk in this component that could allow for malicious pages to intefere with

the operation of the annotation client that overlays proxied pages. The URL authorization mitigates the

risk of this, as does the use of the browser-plugin client.

Observations on Intrusion Prevention

The public Hypothesis service uses Cloudflare as a reverse proxy that provides additional security services.

On numerous occasions during testing the Cloudflare proxy detected and prevented what it determined to

be malicious requests: these included known attack strings, as well as more general patterns such as a high

volume of repeated requests from a single source address.

9

Observations on Third-Party Dependency Management

Automated dependency audits were executed for all Python-based components. No critically vulnerable

dependencies were identified. Additionally, commit history was reviewed for components in scope. Sub-

graph documented use of Dependabot to track updates of dependencies, as well as integration of updates

on a regular basis.

Here is one example of a security vulnerability in a dependency within client being addressed through

tracking and follow-up (merges):

Merged update that addresses CVE-2023-32681: Bump requests from 2.28.1 to 2.31.0 in /requirements

#5583

10

https://github.com/psf/requests/security/advisories/GHSA-j8r2-6x86-q33q
https://github.com/hypothesis/client/pull/5583
https://github.com/hypothesis/client/pull/5583

Summary

No. Title Severity CVSS Remediation

V-001 Minimum Password Length Too Low Medium 6.3 Resolved

V-002 Cookies Set Without Secure Flag Medium 5.0 Resolved

V-003 Stale AWS Access Keys Medium 5.0 Resolved

V-004 Potential OAuth Authentication Bypass Low 5.0 Resolved

11

Details

V-001: Minimum Password Length Too Low

Severity Remediation CVSS Score CVSS Vector

Medium Resolved 6.3 CVSS:3.0/AV:N/AC:L/PR:N/UI:R/S:U/C:L/I:L/A:L

Discussion

Update: This was confirmed fixed in the source code.

The minimum password length for users of hwho create accounts is 2 characters. This issue was discovered

in the source code and verified in the deployed application through the creation of an account with a 2

character password. The source code indicates that the developers were at some point aware of this issue

but have not implemented a fix to date.

The issue can be seen in the public repository here:

PASSWORD_MIN_LENGTH = 2 # FIXME: this is ridiculous

Note that this issue affects the h service when deployed using its own internal identity store, as is the case

with the public service. Deployments that use external identity providers would not be affected, as those

organizations can and will have their own password and authentication policies.

Impact Analysis

Users of the h application are not barred from creating accounts with extremely weak passwords. Since

usernames are trivial to gather due to visibility as public annotators, attacks against users who have opted

for simple passwords seem plausible.

Remediation Recommendations

This issue will require a change to the code to implement greater minimum complexity.

Beyond this, there is the issue of users who currently have very low complexity passwords. Those users

could be identified through a password strength exercise and then encouraged or forced to do a password

change upon login. Something slightly similar was done in the past when the password hashing mechanism

was improved, as evidenced by this check, though it would be a little more challenging as user interaction

could be required, and the information that a user is affected would need to be stored somewhere.

12

https://github.com/hypothesis/h/commit/b7efeca84c068998db822e7c1f2c18dc3a743e2b
https://github.com/hypothesis/h/blob/main/h/accounts/schemas.py#L22
https://github.com/hypothesis/h/blob/main/h/security/encryption.py#L21C1-L23C2
https://github.com/hypothesis/h/blob/main/h/services/user_password.py#L24

Additional Information

N/A

13

V-002: Cookies Set Without Secure Flag

Severity Remediation CVSS Score CVSS Vector

Medium Resolved 5.0 CVSS:3.0/AV:N/AC:H/PR:N/UI:R/S:U/C:L/I:L/A:L

Discussion

Update: Confirmed a fix in the repo commit history.

Cookies set during the login process are not set with the Secure flag. This means that the browser may

send them when making HTTP requests under some specific circumstances, with older browsers being

more exposed. The Pyramid Python framework apparently does not set the secure flag by default, which

may be the root cause of this issue.

14

https://github.com/hypothesis/h/commit/a206bb9a994def3e117ed5de40efedbbeeba181a
https://docs.pylonsproject.org/projects/pyramid/en/latest/narr/security.html

Impact Analysis

This issue is mitigated by the following:

• Modern browsers will not send credentials by default unless the originating request is from a page

that matches the origin

• The application server sends a Strict-Transport-Security header with a max-age of 6 months and

instructs the browser to include subdomains

This reduces the opportunities for exploitation, but does not eliminate them.

Remediation Recommendations

Add the secure flag to cookies that are set following a successful login. For applications that use the Pyramid

framework, this is documented here:

• pyramid.session

Additional Information

N/A

15

https://docs.pylonsproject.org/projects/pyramid/en/latest/api/session.html

V-003: Stale AWS Access Keys

Severity Remediation CVSS Score CVSS Vector

Medium Resolved 5.0 CVSS:3.0/AV:N/AC:H/PR:L/UI:N/S:U/C:L/I:L/A:L

Discussion

Update: This was confirmed resolved in a more recent cloud security scan.

Two AWS access keys were identified as not having been used in the past 90 days:

• lms-via

• pg-snapshot-writer

Impact Analysis

Stale access keys can introduce risk if they are disclosed, which may have a higher probability due to their

not being used yet still remaining valid, usable credentials. Occasionally such credentials remain in source

code or deployment scripts for an indefinite period of time, unnoticed. Long-lived unused credentials are

also potentially indicative of weak or ad-hoc management of privileged access. However, the risk is entirely

based on circumstances that were not apparent at the time of testing. Their being unused may not be the

case, or the credentials may not have meaningful permissions.

Remediation Recommendations

Investigate the purpose and need for these access keys and then reevaluate whether or not they should

remain active.

Additional Information

N/A

16

V-004: Potential OAuth Authentication Bypass

Severity Remediation CVSS Score CVSS Vector

Low Resolved 5.0 CVSS:3.0/AV:N/AC:H/PR:N/UI:R/S:U/C:L/I:L/A:L

Discussion

Update: This issue was corrected in the source code. The function now explicitly fails in the edge case where

this vulnerability may be present.

Note: Strict CVSS3 rating results in a score in the medium range, however Subgraph has downgraded this to

low given the low probability of exploitability.

There is a potential theoretical vulnerability in the implementation of OAuth client authentication.

The potentially problematic code is located here:

provided_secret = request.client_secret
if request.client_secret is None:

hmac.compare_digest raises when one value is `None`
provided_secret = ""

if not hmac.compare_digest(client.secret, provided_secret):
return False

request.client = Client(client)
return True

The above code is from a function that authenticates an OAuth client. The snippet covers the case where

client_secret evaluates (for some reason) to None; in that case the empty string value is assigned. The

reason for this is because hmac.compare_digest() will throw an exception if one of the two values being

compared is None. From a security perspective, this codes creates a theoretical possibility that, if the

client_secret is None, then authenticated messages could be forged as the secret falls back to a known,

hardcoded value. The right approach may be to fail the validation if the value of the client_secret is None.

This wasn’t tested or reproduced, so it is not know how or when, if ever, this issue could manifest. It may

only be possible in circumstances where there is major human error.

Impact Analysis

This is a low risk issue. In order for this to be exploitable, the client_secretmust evaluate to the Python

constant None. The circumstances in which this could occur are not fully understood, and may never

practically exist, though, if there are any such circumstances, it is possible that an adversary could forge

e.g. launch requests.

17

https://github.com/hypothesis/h/commit/37b22dd31c980b723540f196def076f52ba9f15d
https://github.com/hypothesis/h/blob/main/h/services/oauth/_validator.py#L58-L67

Remediation Recommendations

The risk of this function should be more deeply understood, and, if warranted, more robust error handling

for this case should be implemented.

Additional Information

N/A

18

Appendix

Methodology

Our approach to testing is designed to understand the design, behavior, and security considerations of the

assets being tested. This helps us to achieve the best coverage over the duration of the test.

To accomplish this, Subgraph employs automated, manual and custom testing methods. We conduct our

automated tests using the industry standard security tools. This may include using multiple tools to test for

the same types of issues. We perform manual tests in cases where the automated tools are not adequate

or reveal behavior that must be tested manually. Where required, we also develop custom tools to perform

tests or reproduce test findings.

The goals of our testing methodology are to:

• Understand the expected behavior and business logic of the assets being tested

• Map out the attack surface

• Understand how authentication, authorization, and other security controls are implemented

• Test for flaws in the security controls based on our understanding

• Test every point of input against a large number of variables and observe the resulting behavior

• Reproduce and re-test findings

• Gather enough supporting information about findings to enable us to classify, report, and suggest

remediations

Description of testing activities

Depending on the type and scope of the engagement, our methodology may include any of the following

testing activities:

1. Information Gathering: Information will be gathered from publicly availble sources to help increase

the success of attacks or discover new vulnerabilities

2. Network discovery: The networks in scope will be scanned for active, reachable hosts that could be

vulnerable to compromise

3. Host Vulnerability Assessment: Hosts applications and services will be assessed for known or

possible vulnerabilities

4. Application Exploration: The application will be explored using manual and automated methods to

better understand the attack surface and expected behavior

5. Session Management: Session management in web applications will be tested for security flaws

that may allow unauthorized access

6. Authentication System Review: The authentication system will be reviewed to determine if it can

be bypassed

7. Privilege Escalation: Privilege escalation checks will be performed to determine if it is possible for

an authenticated user to gain access to the privileges assigned to another role or administrator

19

8. Input Validation: Input validation tests will be performed on all endpoints and fields within scope,

including tests for injection vulnerabilities (SQL injection, cross-site scripting, command injection,

etc.)

9. Business Logic Review: Business logic will be reviewed, including attempts to subvert the intended

design to cause unexpected behavior or bypass security controls

Reporting

Findings reports are peer-reviewed within Subgraph to produce the highest quality findings. The report

includes an itemized list of findings, classified by their severity and remediation status.

Severity ratings

Severity ratings are a metric to help organizations prioritize security findings. The severity ratings we

provide are simple by design so that at a high-level they can be understood by different audiences. In lieu

of a complex rating system, we quantify the various factors and considerations in the body of the security

findings. For example, if there are mitigating factors that would reduce the severity of a vulnerability, the

finding will include a description of those mitigations and our reasoning for adjusting the rating.

At an organization’s request, we will also provide third-party ratings and classifications. For example, we

can analyze the findings to produce Common Vulnerability Scoring System (CVSS)1 scores or OWASP Top

102 classifications.

The following is a list of the severity ratings we use with some example impacts:

Critical

Exploitation could compromise hosts or highly sensitive information

Critical Exploitation could compromise hosts or highly sensitive information

High

Exploitation could compromise the application or moderately sensitive information

High Exploitation could compromise the application or moderately sensitive information

Medium

Exploitation compromises multiple security properties (confidentiality, integrity, or availability)

Medium Exploitation compromises multiple security properties (confidentiality, integrity, or availability)

1
https://www.first.org/cvss/
2
https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project

20

Low

Exploitation compromises a single security property (confidentiality, integrity, or availability)

Low Exploitation compromises a single security property (confidentiality, integrity, or availability)

Info

Finding does not directly pose a security risk but merits further investigation

Info Finding does not directly pose a security risk but merits further investigation

The severity of a finding is often a product of the impact to general security properties of an application,

host, network, or other information system.

The properties that can be impacted are:

Confidentiality Exploitation results in authorized access to data

Integrity Exploitation results in the unauthorized modification of data or state

Availability Exploitation results in a degradation of performance or an inability to access resources

The actual severity of a finding may be higher or lower depending on a number of other factors that may

mitigate or exacerbate it. These include the context of the finding in relation to the organization as well as

the likelihood of exploitation. These are described in further detail below.

21

Contextual factors

Confidentiality, integrity, and availability are one dimension of the potential risk of a security finding. In

some cases, we must also consider contextual factors that are unique to the organization and the assets

tested.

The following is a list of those factors:

Financial Exploitation may result in financial losses

Reputation Exploitation may result in damage to the reputation of the organization

Regulatory Exploitation may expose the organization to regulatory liability (e.g. make them

non-compliant)

Organizational Exploitation may disrupt the operations of the organization

22

Likelihood

Likelihood measures how probable it is that an attacker exploit a finding.

This is determined by numerous factors, the most influential of which are listed below:

Authentication Whether or not the attack must be authenticated

Privileges Whether or not an authenticated attacker requires special privileges

Public exploit Whether or not exploit code is publicly available

Public knowledge Whether or not the finding is publicly known

Exploit complexity How complex it is for a skilled attacker to exploit the finding

Local vs. remote Whether or not the finding is exposed to the network

Accessibility Whether or not the affected asset is exposed on the public Internet

Discoverability How easy it is for the finding to be discovered by an attacker

Dependencies Whether or not exploitation is dependant on other findings such as information leaks

23

Remediation status

As part of our reporting, remediation recommendations are provided to the client. To help track the issues,

we also provide a remediation status rating in the findings report.

In some cases, the organizationmay be confident to remediate the issue and test it internally. In other cases,

Subgraph works with the organization to re-test the findings, resulting in a subsequent report reflecting

remediation status updates.

If requested to re-test findings, we determine the remediation status based on our ability to reproduce the

finding. This is based on our understanding of the finding and our awareness of potential variants at that

time. To reproduce the results, the re-test environment should be as close to the original test environment

as possible.

Security findings are often due to unexpected or unanticipated behavior that is not always understood

by the testers or the developers. Therefore, it is possible that a finding or variations of the finding may

still be present even if it is not reproducible during a re-test. While we will do our best to work with the

organization to avoid this, it is still possible.

The findings report includes the following remediation status information:

Resolved

Finding is believed to be remediated, we can no longer reproduce it

Resolved Finding is believed to be remediation, we can no longer reproduce it

In progress

Finding is in the process of being remediated

In progress Finding is in the process of being remediated

Unresolved

Finding is unresolved – used in initial report or when the organization chooses not to resolve

Unresolved Finding is unresolved – used in initial report or when the organization chooses not to resolve

Not applicable

There is nothing to resolve, this may be the case with informational findings

24

	Overview
	Summary of Activities
	Hosts Tested
	Tools Used
	Code Review
	Artifacts Examined
	Infrastructure
	Duration
	Observations on Authentication
	Observations on Input Validation
	Observations on Authentication
	Observations on Cloud Infrastructure
	Observations on Authorization
	Observations on Intrusion Prevention
	Observations on Third-Party Dependency Management

	Summary
	Details
	V-001: Minimum Password Length Too Low
	Discussion
	Impact Analysis
	Remediation Recommendations
	Additional Information

	V-002: Cookies Set Without Secure Flag
	Discussion
	Impact Analysis
	Remediation Recommendations
	Additional Information

	V-003: Stale AWS Access Keys
	Discussion
	Impact Analysis
	Remediation Recommendations
	Additional Information

	V-004: Potential OAuth Authentication Bypass
	Discussion
	Impact Analysis
	Remediation Recommendations
	Additional Information

	Appendix
	Methodology
	Description of testing activities
	Reporting
	Severity ratings
	Contextual factors
	Likelihood
	Remediation status

